INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

74HC/HCT195

FEATURES

- Asynchronous master reset
- J, \overline{K} , (D) inputs to the first stage
- Fully synchronous serial or parallel data transfer
- Shift right and parallel load capability
- Complement output from the last stage
- · Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT195 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT195 performs serial, parallel, serial-to-parallel or parallel-to-serial data transfer at very high speeds. The "195" operates on two primary modes: shift right ($Q_0 \rightarrow Q_1$) and parallel load, which are controlled

by the state of the parallel load enable (\overline{PE}) input. Serial data enters the first flip-flop (Q_0) via the J and \overline{K} inputs when the \overline{PE} input is HIGH and shifted one bit in the direction $Q_0 \rightarrow Q_1 \rightarrow Q_2 \rightarrow Q_3$ following each LOW-to-HIGH clock transition. The J and \overline{K} inputs provide the flexibility of the J \overline{K} type input for special applications and by tying the pins together, the simple D-type input for general applications. The "195" appears as four common clocked D flip-flops when the \overline{PE} input is LOW.

After the LOW-to-HIGH clock transition, data on the parallel inputs (D₀ to D₃) is transferred to the respective Q₀ to Q₃ outputs. Shift left operation (Q₃ \rightarrow Q₂) can be achieved by tying the Q_n outputs to the D_{n-1} inputs and holding the \overrightarrow{PE} input LOW.

All parallel and serial data transfers are synchronous, occurring after each LOW-to-HIGH clock transition. There is no restriction on the activity of the J, \overline{K} , D_n and \overline{PE} inputs for logic operation other than the set-up and hold time requirements. A LOW on the asynchronous master reset (\overline{MR}) input sets all Q outputs LOW, independent of any other input condition.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYF		
STWBUL	PARAMETER	CONDITIONS	НС	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay CP to Q _n	C _L = 15 pF; V _{CC} = 5 V	15	15	ns
f _{max}	maximum clock frequency		57	57	MHz
CI	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	105	105	pF

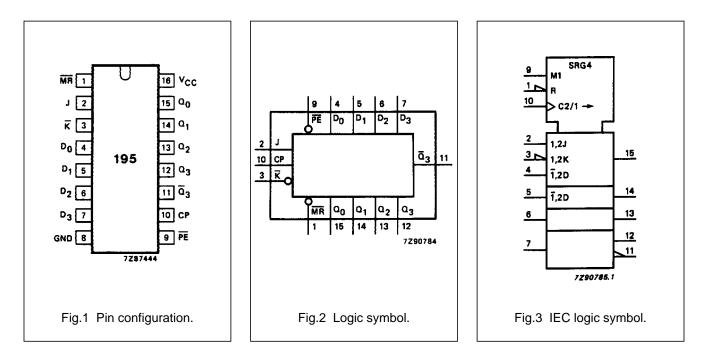
Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \quad \text{ where:}$

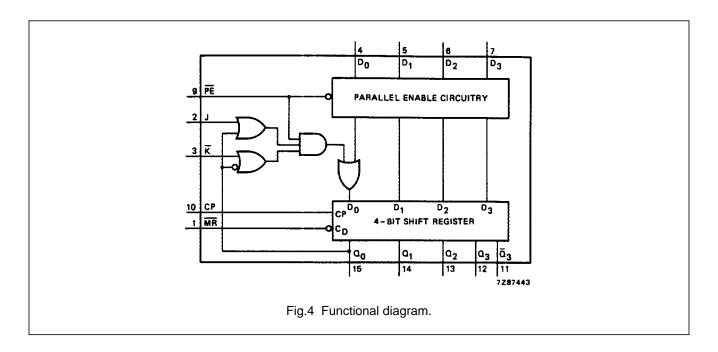
 f_i = input frequency in MHz

f_o = output frequency in MHz


- $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$
- C_L = output load capacitance in pF
- V_{CC} = supply voltage in V
- 2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1,5 V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".


PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	MR	master reset input (active LOW)
2	J	first stage J-input (active HIGH)
3	κ	first stage K-input (active LOW)
4, 5, 6, 7	D ₀ to D ₃	parallel data inputs
8	GND	ground (0 V)
9	PE	parallel enable input (active LOW)
10	СР	clock input (LOW-to-HIGH edge-triggered)
11	\overline{Q}_3	inverted output from the last stage
15, 14, 13, 12	Q ₀ to Q ₃	parallel outputs
16	V _{CC}	positive supply voltage

74HC/HCT195

74HC/HCT195

APPLICATIONS

- Serial data transfer
- Parallel data transfer
- Serial-to-parallel data transfer
- Parallel-to-serial data transfer

FUNCTION TABLE

			INPUT	S	OUTPUTS						
OPERATING MODES	MR	СР	PE	J	ĸ	Dn	Q ₀	Q ₁	Q ₂	Q ₃	\overline{Q}_3
asynchronous reset	L	Х	Х	Х	Х	Х	L	L	L	L	Н
shift, set first stage	Н	\uparrow	h	h	h	Х	Н	q0	q1	q2	q2
shift, reset first stage	Н	\uparrow	h	1	I	X	L	q0	q1	q2	<u>q</u> 2
shift, toggle first stage	Н	↑	h	h		X	q0	q0	q1	q2	q2
shift, retain first stage	н	\uparrow	h	I	h	X	q0	q0	q1	q2	q2
parallel load	Н	1	I	Х	Х	d _n	d ₀	d ₁	d_2	d ₃	\overline{d}_3

Notes

- 1. H = HIGH voltage level
 - h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition
 - L = LOW voltage level
 - I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition
 - q, d = lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW-to-HIGH clock transition

X = don't care

 \uparrow = LOW-to-HIGH clock transition

74HC/HCT195

74HC/HCT195

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

					T _{amb} (°		TEST CONDITIONS					
					74HC			WAVEFORMO				
SYMBOL	PARAMETER		+25			-40 to +85		-40 to +125		V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		50 18 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.6	
t _{PHL}	propagation delay MR to Q _n		41 15 12	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.8	
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6	
t _W	clock pulse width HIGH or LOW	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6	
t _W	master reset pulse width LOW	80 16 14	11 4 3		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.8	
t _{rem}	removal time MR to CP	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.8	
t _{su}	set-up time J to CP	100 20 17	33 12 10		125 25 21		150 30 26		ns	2.0 4.5 6.0	Figs 8 and 9	
t _{su}	set-up time K, PE, D _n to CP	80 16 14	25 9 7		100 20 17		120 24 20		ns	2.0 4.5 6.0	Figs 8 and 9	
t _h	hold time J, K, PE, D _n to CP	3 3 3	-8 -3 -2		3 3 3		3 3 3		ns	2.0 4.5 6.0	Figs 8 and 9	
f _{max}	maximum clock pulse frequency	6 30 35	17 52 62		5 24 28		4 20 24		MHz	2.0 4.5 6.0	Fig.6	

74HC/HCT195

DC CHARACTERISTICS FOR HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

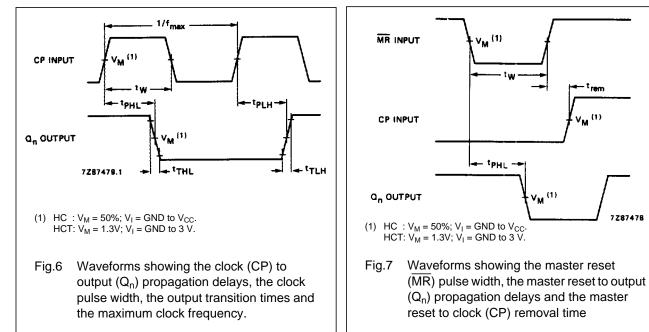
INPUT	UNIT LOAD COEFFICIENT
PE	0.65
all others	0.35

AC CHARACTERISTICS FOR 74HCT

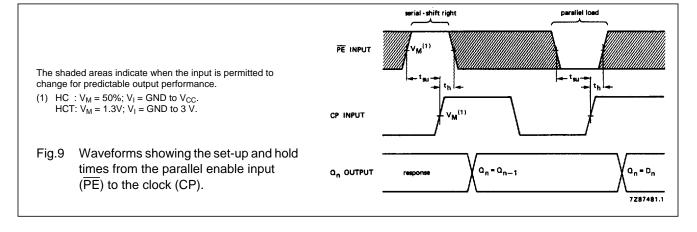
GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

	PARAMETER			Т	amb (°C	UNIT	TEST CONDITIONS					
SYMBOL					74HC1			WAVEFORMS				
STMBOL	FARAMETER		+25			-40 to +85		-40 to +125		V _{CC} (V)	WAVEFORINS	
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		18	32		40		48	ns	4.5	Fig.6	
t _{PHL}	propagation delay MR to Q _n		17	35		44		53	ns	4.5	Fig.8	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6	
t _W	clock pulse width HIGH or LOW	20	6		25		30		ns	4.5	Fig.6	
t _W	master reset pulse width LOW	16	6		20		24		ns	4.5	Fig.8	
t _{rem}	removal time MR to CP	16	6		20		24		ns	4.5	Fig.8	
t _{su}	set-up time J, \overline{K} , \overline{PE} to CP	20	12		25		30		ns	4.5	Figs 8 and 9	
t _{su}	set-up time D _n to CP	16	6		20		24		ns	4.5	Figs 8 and 9	
t _h	hold time J, \overline{K} , \overline{PE} , D_n to CP	3	-5		3		3		ns	4.5	Figs 8 and 9	
f _{max}	maximum clock pulse frequency	27	52		22		18		MHz	4.5	Fig.6	

74HC/HCT195


Dem

'м ⁽¹⁾


Z87478

V_M ⁽¹⁾

AC WAVEFORMS

The shaded areas indicate when the input is permitted to	CP INPUT	
change for predictable output performance. (1) HC : $V_M = 50\%$; $V_I = GND$ to V_{CC} . HCT: $V_M = 1.3V$; $V_I = GND$ to 3 V.	D _n , J, K, INPUTS	$v_{M}^{(1)}$
Fig.8 Waveforms showing the data set-up and hold times for J, \overline{K} and D_n inputs.	a _n output	V _M (1) 7287480

74HC/HCT195

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.